注册 登录  
 加关注
   显示下一条  |  关闭
温馨提示!由于新浪微博认证机制调整,您的新浪微博帐号绑定已过期,请重新绑定!立即重新绑定新浪微博》  |  关闭

云之南

风声,雨声,读书声,声声入耳;家事,国事,天下事,事事关心

 
 
 

日志

 
 
关于我

专业背景:计算机科学 研究方向与兴趣: JavaEE-Web软件开发, 生物信息学, 数据挖掘与机器学习, 智能信息系统 目前工作: 基因组, 转录组, NGS高通量数据分析, 生物数据挖掘, 植物系统发育和比较进化基因组学

网易考拉推荐

Long branch attraction (LBA)  

2015-08-29 22:36:45|  分类: 进化与系统学 |  标签: |举报 |字号 订阅

  下载LOFTER 我的照片书  |


In phylogenetics, long branch attraction (LBA) is a form of systematic error whereby distantly related lineages are incorrectly inferred to be closely related. LBA arises when the amount of molecular or morphological change accumulated within a lineage is sufficient to cause that lineage to appear similar (thus closely related) to another long-branched lineage, solely because they have both undergone a large amount of change, rather than because they are related by descent. Such bias is more common when the overall divergence of some taxa results in long branches within a phylogeny. Long-branches are often attracted to the base of a phylogenetic tree, because the lineage included to represent an outgroup is often also long-branched. The frequency of true LBA is unclear and often debated.[1][2][3] Although often viewed as a failing of parsimony-based methodology, LBA can result from a variety of scenarios and be inferred under multiple analysis paradigms.

Contents

Causes

LBA was first recognized as problematic when analyzing discrete morpological character sets under parsimony criteria, however Maximum Likelihood analyses of DNA or protein sequences are also susceptible. A simple hypothetical example can be found in Felsenstein 1978 where it is demonstrated that for certain unknown "true" trees, some methods can show bias for grouping long branches, ultimately resulting in the inference of a false sister relationship.[4] Often this is because convergent evolution of one or more characters included in the analysis has occurred in multiple taxa. Although they were derived independently, these shared traits can be misinterpreted in the analysis as being shared due to common ancestry.

In phylogenetic and clustering analyses, LBA is a result of the way clustering algorithms work: terminals or taxa with many autapomorphies (character states unique to a single branch) may by chance exhibit the same states as those on another branch (homoplasy). A phylogenetic analysis will group these taxa together as a clade unless other synapomorphies outweigh the homoplastic features to group together true sister taxa.

These problems may be minimized by using methods that correct for multiple substitutions at the same site, by adding taxa related to those with the long branches that add additional true synapomorphies to the data, or by using alternative slower evolving traits (e.g. more conservative gene regions).

Results

The result of LBA in evolutionary analyses is that rapidly evolving lineages may be inferred to be closely related, regardless of their true relationships. For example, in DNA sequence-based analyses, the problem arises when sequences from two (or more) lineages evolve rapidly. There are only four possible nucleotides and when DNA substitution rates are high, the probability that two lineages will evolve the same nucleotide at the same site increases. When this happens, parsimony may erroneously interpret this homoplasy as a synapomorphy (i.e., evolving once in the common ancestor of the two lineages).

The opposite effect may also be observed, in that if two (or more) branches exhibit particularly slow evolution among a wider, fast evolving group, those branches may be misinterpreted as closely related. As such, "long branch attraction" can in some ways be better expressed as "branch length attraction". However, it is typically long branches that exhibit attraction.

The recognition of long-branch attraction implies that there is some other evidence that suggests that the phylogeny is incorrect. For example morphological data may suggest that taxa marked as closely related are not truly sister taxa. Hennig's Auxiliary Principle suggests that synapomorphies should be viewed as de facto evidence of grouping unless there is specific contrary evidence (Hennig, 1966; Schuh and Brower, 2009).

A simple and effective method for determining whether or not long branch attraction is affecting tree topology is the SAW method, named for Siddal and Whiting. If long branch attraction is suspected in a pair of taxa (A and B), simply remove taxon A ("saw" off the branch) and re-run the analysis. Then remove A and replace B, running the analysis again. If either of the taxa appear at different branch points in the absence of the other, there is evidence of long branch attraction. Since long branches can't possibly attract one another when only one is in the analysis, consistent taxon placement between treatments would indicate long branch attraction is not a problem.[5]

Example

An example of long branch attraction. Branches A & C have a high number of substitutions. 

Siddall, M. E.; Whiting, M. F. (1999). "Long-Branch Abstractions". Cladistics 15: 9–24. doi:10.1111/j.1096-0031.1999.tb00391.x.
  • Bergsten, J. (2005): A review of long-branch attraction. Cladistics 21(2): 163-193. PDF fulltext
  • Felsenstein, J. (2004): Inferring Phylogenies. Sinauer Associates, Sunderland, MA.
  • Hennig, W. (1966): Phylogenetic Systematics. University of Illinois Press, Urbana, IL.
  • Schuh, R. T. and Brower, A. V. Z. (2009): Biological Systematics: Principles and Applications, (2nd edn.) Cornell University Press, Ithaca, NY.
  • Bergsten J. (2005): "A review of long-branch attraction". Blackwell Publishing [cited 2014 Oct 1] 21(2):163-193. Available from: http://onlinelibrary.wiley.com/doi/10.1111/j.1096-0031.2005.00059.x/pdf
  • Grishin, Nick V. "Long Branch Attraction." Long Branch Attraction. Butterflies of America, 17 Aug. 2009. Web. 15 Sept. 2014. <http://butterfliesofamerica.com/knowhow/LBA.htm>.
  评论这张
 
阅读(376)| 评论(0)
推荐 转载

历史上的今天

在LOFTER的更多文章

评论

<#--最新日志,群博日志--> <#--推荐日志--> <#--引用记录--> <#--博主推荐--> <#--随机阅读--> <#--首页推荐--> <#--历史上的今天--> <#--被推荐日志--> <#--上一篇,下一篇--> <#-- 热度 --> <#-- 网易新闻广告 --> <#--右边模块结构--> <#--评论模块结构--> <#--引用模块结构--> <#--博主发起的投票-->
 
 
 
 
 
 
 
 
 
 
 
 
 
 

页脚

网易公司版权所有 ©1997-2016