注册 登录  
 加关注
   显示下一条  |  关闭
温馨提示!由于新浪微博认证机制调整,您的新浪微博帐号绑定已过期,请重新绑定!立即重新绑定新浪微博》  |  关闭

云之南

风声,雨声,读书声,声声入耳;家事,国事,天下事,事事关心

 
 
 

日志

 
 
关于我

专业背景:计算机科学 研究方向与兴趣: JavaEE-Web软件开发, 生物信息学, 数据挖掘与机器学习, 智能信息系统 目前工作: 基因组, 转录组, NGS高通量数据分析, 生物数据挖掘, 植物系统发育和比较进化基因组学

网易考拉推荐

List of sequence alignment software  

2011-08-27 20:03:52|  分类: 生信分析软件 |  标签: |举报 |字号 订阅

  下载LOFTER 我的照片书  |
http://en.wikipedia.org/wiki/List_of_sequence_alignment_software
http://genomewiki.ucsc.edu/index.php/Whole_genome_alignment_howto

List of sequence alignment software

From Wikipedia, the free encyclopedia
Jump to: navigation, search

This list of sequence alignment software is a compilation of software tools and web portals used in pairwise sequence alignment and multiple sequence alignment. See structural alignment software for structural alignment of proteins.

Contents

[edit] Database search only

Name Description Sequence Type* Link Authors Year
BLAST local search with fast k-tuple heuristic (Basic Local Alignment Search Tool) Both NCBI EBI DDBJ DDBJ (psi-blast) GenomeNet PIR (protein only) Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ[1] 1990
CS-BLAST sequence-context specific BLAST, more sensitive than BLAST, FASTA, and SSEARCH. Position-specific iterative version CSI-BLAST more sensitive than PSI-BLAST Protein CS-BLAST server download Biegert A, S?ding J[2] 2009
FASTA local search with fast k-tuple heuristic, slower but more sensitive than BLAST Both EBI DDBJ GenomeNet PIR (protein only)

GGSEARCH / GLSEARCH Global:Global (GG), Global:Local (GL) alignment with statistics Protein FASTA server

HMMER local and global search with profile Hidden Markov models, more sensitive than PSI-BLAST Both download Durbin R, Eddy SR, Krogh A, Mitchison G[3] 1998
HHpred / HHsearch pairwise comparison of profile Hidden Markov models; very sensitive, but can only search alignment databases (Pfam, PDB, InterPro...) Protein server download S?ding J[4] 2005
IDF Inverse Document Frequency Both download

Infernal profile SCFG search RNA download Eddy S
PSI-BLAST position-specific iterative BLAST, local search with position-specific scoring matrices, much more sensitive than BLAST Protein NCBI PSI-BLAST Altschul SF, Madden TL, Sch?ffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ[5] 1997
Sequilab Linking and profiling sequence alignment data from NCBI-BLAST results with major sequence analysis servers/services Nucleotide/peptide server
2010
SAM local and global search with profile Hidden Markov models, more sensitive than PSI-BLAST Both SAM Karplus K, Krogh A[6] 1999
SSEARCH Smith-Waterman search, slower but more sensitive than FASTA Both EBI DDBJ

*Sequence Type: Protein or nucleotide

 Pairwise alignment

Name Description Sequence Type* Alignment Type** Link Author Year
ACANA fast heuristic anchor based pairwise alignment Both Both download Huang, Umbach, Li 2005
AlignMe Alignments for low identity membrane protein sequences based on various similarity criteria Protein Both download,server K. Khafizov, R. Staritzbichler, M. Stamm, L.R. Forrest 2010
Bioconductor Biostrings::pairwiseAlignment Dynamic programming Both Both + Ends-free site P. Aboyoun 2008
BioPerl dpAlign Dynamic programming Both Both + Ends-free site Y. M. Chan 2003
BLASTZ,LASTZ Seeded pattern-matching Nucleotide Local download,download Schwartz et al. 2004,2009
DNADot Web-based dot-plot tool Nucleotide Global server R. Bowen 1998
DOTLET Java-based dot-plot tool Both Global applet M. Pagni and T. Junier 1998
FEAST Posterior based local extension with descriptive evolution model Nucleotide Local site A. K. Hudek and D. G. Brown 2010
GGSEARCH, GLSEARCH Global:Global (GG), Global:Local (GL) alignment with statistics Protein Global in query FASTA server W. Pearson 2007
JAligner Open source Java implementation of Smith-Waterman Both Local JWS A. Moustafa 2005
LALIGN Multiple, non-overlapping, local similarity (same algorithm as SIM) Both Local non-overlapping server FASTA server W. Pearson 1991 (algorithm)
mAlign modelling alignment; models the information content of the sequences Nucleotide Both [1] [2] D. Powell, L. Allison and T. I. Dix 2004
matcher Memory-optimized Needleman-Wunsch dynamic programming (based on LALIGN) Both Local Pasteur I. Longden (modified from W. Pearson) 1999
MCALIGN2 explicit models of indel evolution DNA Global server J. Wang et al. 2006
MUMmer suffix tree based Nucleotide Global download S. Kurtz et al. 2004
needle Needleman-Wunsch dynamic programming Both SemiGlobal EBIPasteur A. Bleasby 1999
Ngila logarithmic and affine gap costs and explicit models of indel evolution Both Global download R. Cartwright 2007
Path Smith-Waterman on protein back-translation graph (detects frameshifts at protein level) Protein Local server download M. G?rdea et al. 2009
PatternHunter Seeded pattern-matching Nucleotide Local download B. Ma et al. 2002–2004
ProbA (also propA) Stochastic partition function sampling via dynamic programming Both Global download U. Mückstein 2002
PyMOL "align" command aligns sequence & applies it to structure Protein Global (by selection) site W. L. DeLano 2007
REPuter suffix tree based Nucleotide Local download S. Kurtz et al. 2001
SABERTOOTH Alignment using predicted Connectivity Profiles Protein Global download on request F. Teichert, J. Minning, U. Bastolla, and M. Porto 2009
Satsuma Parallel whole-genome synteny alignments DNA Local download M.G. Grabherr et al. 2010
SEQALN Various dynamic programming Both Local or Global server M.S. Waterman and P. Hardy 1996
SIM, GAP, NAP, LAP Local similarity with varying gap treatments Both Local or global server X. Huang and W. Miller 1990-6
SIM Local similarity Both Local servers X. Huang and W. Miller 1991
SPA: Super pairwise alignment Fast pairwise global alignment Nucleotide Global available upon request Shen, Yang, Yao, Hwang 2002
SSEARCH Local (Smith-Waterman) alignment with statistics Protein Local EBI FASTA server W. Pearson 1981 (Algorithm)
Sequences Studio Java applet demonstrating various algorithms from [7] Generic sequence Local and global code applet A.Meskauskas 1997 (reference book)
SWIFT suit Fast Local Alignment Searching DNA Local site K. Rasmussen, W. Gerlach 2005,2008
stretcher Memory-optimized dynamic programming Both Global Pasteur I. Longden (modified from G. Myers and W. Miller) 1999
tranalign Aligns nucleic acid sequences given a protein alignment Nucleotide NA Pasteur G. Williams (modified from B. Pearson) 2002
UGENE Opensource Smith-Waterman for SSE/CUDA, Suffix array based repeats finder & dotplot Both Both UGENE site UniPro 2010
water Smith-Waterman dynamic programming Both Local EBIPasteur A. Bleasby 1999
wordmatch k-tuple pairwise match Both NA Pasteur I. Longden 1998
YASS Seeded pattern-matching Nucleotide Local server download L. Noe and G. Kucherov 2003–2007
*Sequence Type: Protein or nucleotide. **Alignment Type: Local or global

 Multiple sequence alignment

Name Description Sequence Type* Alignment Type** Link Author Year
ABA A-Bruijn alignment Protein Global download B.Raphaelet al. 2004
ALE manual alignment ; some software assistance Nucleotides Local download J. Blandy and K. Fogel 1994 (latest version 2007)
AMAP Sequence annealing Both Global server A. Schwartz and L. Pachter 2006
anon. fast, optimal alignment of three sequences using linear gap costs Nucleotides Global paper software D. Powell, L. Allison and T. I. Dix 2000
BAli-Phy Tree+Multi alignment ; Probabilistic/Bayesian ; Joint Estimation Both Global WWW+download BD Redelings and MA Suchard 2005 (latest version 2010)
CHAOS/DIALIGN Iterative alignment Both Local (preferred) server M. Brudno and B. Morgenstern 2003
ClustalW Progressive alignment Both Local or Global download EBI DDBJ PBIL EMBNet GenomeNet Thompson et al. 1994
CodonCode Aligner Multi alignment; ClustalW & Phrap support Nucleotides Local or Global download P. Richterich et al. 2003 (latest version 2009)
DIALIGN-TX and DIALIGN-T Segment-based method Both Local (preferred) or Global download and server A.R.Subramanian 2005 (latest version 2008)
DNA Alignment Segment-based method for intraspecific alignments Both Local (preferred) or Global server A.Roehl 2005 (latest version 2008)
FSA Sequence annealing Both Global download and server R. K. Bradley et al. 2008
Geneious Progressive/Iterative alignment; ClustalW plugin Both Local or Global download A.J. Drummond et al. 2005 (latest version 2009)
Kalign Progressive alignment Both Global serverEBI MPItoolkit T. Lassmann 2005
MAFFT Progressive/iterative alignment Both Local or Global GenomeNet MAFFT K. Katoh et al. 2005
MARNA Multiple Alignment of RNAs RNA Local server download S. Siebert et al. 2005
MAVID Progressive alignment Both Global server N. Bray and L. Pachter 2004
MSA Dynamic programming Both Local or Global download D.J. Lipman et al. 1989 (modified 1995)
MSAProbs Dynamic programming Protein Global download Y. Liu, B. Schmidt, D. Maskell 2010
MULTALIN Dynamic programming/clustering Both Local or Global server F. Corpet 1988
Multi-LAGAN Progressive dynamic programming alignment Both Global server M. Brudno et al. 2003
MUSCLE Progressive/iterative alignment Both Local or Global server R. Edgar 2004
Opal Progressive/iterative alignment Both Local or Global download T. Wheeler and J. Kececioglu 2007
Pecan Probabilistic/consistency DNA Global download B. Paten et al. 2008
Phylo A human computing framework for comparative genomics to solve multiple alignment Nucleotides Local or Global [3] McGill Bioinformatics 2010
Praline Progressive/iterative/consistency/homology-extended alignment with pre-profiling and secondary structure prediction Protein Global server J. Heringa 1999 (latest version 2009)
POA Partial order/hidden Markov model Protein Local or Global download C. Lee 2002
Probalign Probabilistic/consistency with partition function probabilities Protein Global server Roshan and Livesay 2006
ProbCons Probabilistic/consistency Protein Local or Global server C. Do et al. 2005
PROMALS3D Progressive alignment/hidden Markov model/Secondary structure/3D structure Protein Global server J. Pei et al. 2008
PRRN/PRRP Iterative alignment (especially refinement) Protein Local or Global PRRP PRRN Y. Totoki (based on O. Gotoh) 1991 and later
PSAlign Alignment preserving non-heuristic Both Local or Global download S.H. Sze, Y. Lu, Q. Yang. 2006
RevTrans Combines DNA and Protein alignment, by back translating the protein alignment to DNA. DNA/Protein (special) Local or Global server Wernersson and Pedersen 2003 (newest version 2005)
SAGA Sequence alignment by genetic algorithm Protein Local or Global download C. Notredame et al. 1996 (new version 1998)
SAM Hidden Markov model Protein Local or Global server A. Krogh et al. 1994 (most recent version 2002)
Se-Al Manual alignment Both Local download A. Rambaut 2002
StatAlign Bayesian co-estimation of alignment and phylogeny (MCMC) Both Global download A. Novak et al. 2008
Stemloc Multiple alignment and secondary structure prediction RNA Local or Global download I. Holmes 2005
T-Coffee More sensitive progressive alignment Both Local or Global server download C. Notredame et al. 2000 (newest version 2008)
UGENE Supports multiple alignment with MUSCLE, KAlign, Clustal and MAFFT plugins Both Local or Global download UGENE team 2010
*Sequence Type: Protein or nucleotide. **Alignment Type: Local or global

 Genomics analysis

Name Description Sequence Type* Link
ACT (Artemis Comparison Tool) Synteny and comparative genomics Nucleotide server
AVID Pairwise global alignment with whole genomes Nucleotide server
BLAT Alignment of cDNA sequences to a genome. Nucleotide
GMAP Alignment of cDNA sequences to a genome. Identifies splice site junctions with high accuracy. Nucleotide http://research-pub.gene.com/gmap
Mauve Multiple alignment of rearranged genomes (also available inside Geneious) Nucleotide download
MGA Multiple Genome Aligner Nucleotide download
Mulan Local multiple alignments of genome-length sequences Nucleotide server
Multiz Multiple alignment of genomes Nucleotide download
PLAST-ncRNA Search for ncRNAs in genomes by partition function local alignment Nucleotide server
Sequerome Profiling sequence alignment data with major servers/services Nucleotide/peptide server
Sequilab Profiling sequence alignment data from NCBI-BLAST results with major servers/services Nucleotide/peptide server
Shuffle-LAGAN Pairwise glocal alignment of completed genome regions Nucleotide server
SIBsim4 / Sim4 A program designed to align an expressed DNA sequence with a genomic sequence, allowing for introns Nucleotide download
SLAM Gene finding, alignment, annotation (human-mouse homology identification) Nucleotide server
*Sequence Type: Protein or nucleotide



 Motif finding

Name Description Sequence Type* Link
BLOCKS Ungapped motif identification from BLOCKS database Both server
eMOTIF Extraction and identification of shorter motifs Both servers
Gibbs motif sampler Stochastic motif extraction by statistical likelihood Both server server
HMMTOP Prediction of transmembrane helices and topology of proteins Protein homepage & download
I-sites Local structure motif library Protein server
JCoils Prediction of Coiled coil and Leucine Zipper Protein homepage & download
MEME/MAST Motif discovery and search Both server
MERCI Discriminative motif discovery and search Both homepage & download
PHI-Blast Motif search and alignment tool Both Pasteur
Phyloscan Motif search tool Nucleotide server
PRATT Pattern generation for use with ScanProsite Protein server
ScanProsite Motif database search tool Protein server
TEIRESIAS Motif extraction and database search Both server
*Sequence Type: Protein or nucleotide



 Benchmarking

Name Link Authors
BAliBASE download Thompson, Plewniak, Poch
HOMSTRAD download Mizuguchi
Oxbench download Raghava, Searle, Audley, Barber, Barton
PFAM download
PREFAB download Edgar
SABmark download Van Walle, Lasters, Wyns
SMART download Letunic, Copley, Schmidt, Ciccarelli, Doerks, Schultz, Ponting, Bor

Alignment Viewers/Editors

Please see the List of alignment visualization software.

 Short-Read Sequence Alignment

Name Description paired-end option Use FASTQ quality Gapped Multi-threaded License Link
BFAST Explicit time and accuracy tradeoff with a prior accuracy estimation, supported by indexing the reference sequences. Optimally compresses indexes. Can handle billions of short reads. Can handle insertions, deletions, SNPs, and color errors (can map ABI SOLiD color space reads). Performs a full Smith Waterman alignment.


Yes (POSIX Threads) GPL link
BLASTN BLAST's nucleotide alignment program, slow and not accurate for short reads, and uses a sequence database (EST, sanger sequence) rather than a reference genome.



link
BLAT Made by Jim Kent. Can handle one mismatch in initial alignment step.


Yes (client/server). Free for academic and non-commercial use. link
Bowtie Uses a Burrows-Wheeler transform to create a permanent, reusable index of the genome; 1.3 GB memory footprint for human genome. Aligns more than 25 million Illumina reads in 1 CPU hour. Supports Maq-like and SOAP-like alignment policies (can be run from inside Geneious Server).


Yes (POSIX Threads) Artistic License link
BWA Uses a Burrows-Wheeler transform to create an index of the genome. It's a bit slower than bowtie but allows indels in alignment (can be run from inside Geneious Server).


Yes GPL link
CASHX Quantify and manage large quantities of short-read sequence data. CASHX pipeline contains a set of tools that can be used together or as independent modules on their own. This algorithm is very accurate for perfect hits to a reference genome.


No Free for academic and non-commercial use. link
CUDA-EC Short-read alignment error correction using GPUs.


Yes (GPU enabled)
CUDA-EC-
ELAND Implemented by Illumina. Includes ungapped alignment with a finite read length.





GNUMAP Accurately performs gapped alignment of sequence data obtained from next-generation sequencing machines (specifically that of Solexa/Illumina) back to a genome of any size. Includes adaptor trimming, SNP calling and Bisulfite sequence analysis.
Yes (also supports Illumina *_int.txt and *_prb.txt files with all 4 quality scores for each base)
Multithreading and MPI-enabled
[4]
GEM High-quality alignment engine (exhaustive mapping, that is 100% of sensitivity, for any number of substitutions; 1 non-exhaustive indel). Several standalone applications (mapper, split mapper, mappability, and other) provided.
Yes Yes Yes GPL; GEM source is currently unavailable link
GMAP and GSNAP Robust, fast, short-read alignment. GMAP: longer reads, with multiple indels and splices (see entry above under Genomics analysis); GSNAP: shorter reads, with a single indel or up to two splices per read. Useful for digital gene expression, SNP and indel genotyping. Developed by Thomas Wu at Genentech. Used by the National Center for Genome Resources (NCGR) in Alpheus.


Yes Free for academic and non-commercial use. [5]
Geneious Assembler Fast, accurate overlap assembler with the ability to handle any combination of sequencing technology, read length, any pairing orientations, with any spacer size for the pairing, with or without a reference genome.


Yes Commercial [6]
LAST





link
MAQ Ungapped alignment that takes into account quality scores for each base (can be run from inside Geneious Server).



GPL link
MOM MOM or maximum oligonucleotide mapping is a query matching tool that captures a maximal length match within the short read.


Yes
[7]
MOSAIK Fast gapped aligner and reference-guided assembler. Aligns reads using a banded Smith-Waterman algorithm seeded by results from a k-mer hashing scheme. Supports reads ranging in size from very short to very long.


Yes
link
MPscan Fast aligner based on a filtration strategy (no indexing, use q-grams and Backward Nondeterministic DAWG Matching)




link
Novoalign Gapped alignment of single end and paired end Illumina GA I & II reads and reads from the new Helicos Heliscope Genome Analyzer. High sensitivity and specificity, using base qualities at all steps in the alignment. Includes adapter trimming, base quality calibration, Bi-Seq alignment, and option to report multiple alignments per read.


Multi-threading and MPI versions available with paid license. Single threaded version free for academic and non-commercial use. Novocraft
NextGENe NextGENe? software has been developed specifically for use by biologists performing analysis of next generation sequencing data from Roche Genome Sequencer FLX, Illumina GA/HiSeq, Life Technologies Applied BioSystems’ SOLiD? System, PacBio and Ion Torrent platforms. Yes Yes Yes Yes Commercial Softgenetics
PALMapper PALMapper, efficiently computes both spliced and unspliced alignments at high accuracy. Relying on a machine learning strategy combined with a fast mapping based on a banded Smith-Waterman-like algorithm it aligns around 7 million reads per hour on a single CPU. It refines the originally proposed QPALMA approach.


Yes GPL [8]
PerM Indexes the genome with periodic seeds to quickly find alignments with full sensitivity up to four mismatches. It can map Illumina and SOLiD reads. Unlike most mapping programs, speed increases for longer read lengths.


Yes GPL link
QPalma Is able to take advantage of quality scores, intron lengths and computation splice site predictions to perform and performs an unbiased alignment. Can be trained to the specifics of a RNA-seq experiment and genome. Useful for splice site/intron discovery and for gene model building. (See PALMapper for a faster version).


Yes (client/server) GPLv2 link
RazerS No read length limit. Hamming or edit distance mapping with configurable error rates. Configurable and predictable sensitivity (runtime/sensitivity tradeoff). Supports paired-end read mapping.



LGPL link
RMAP Read lengths can range from 20bp to at most 64bp. Uses the "exclusion principle" to allow for mismatches and look-up reads in an index.




link
rNA A randomized Numerical Aligner for Accurate alignment of NGS reads Yes Low quality bases trimming Yes Multithreading and MPI-enabled GPL v3 link
RTG Investigator Extremely fast, tolerant to high indel and substitution counts. Includes full read alignment. Product includes comprehensive pipelines for variant detection and metagenomic analysis with any combination of Illumina, Complete Genomics and Roche 454 data. Yes Yes, for variant calling Yes Yes Free for individual investigator use. link
Segemehl Can handle insertions, deletions and mismatches. Uses enhanced suffix arrays. No No Yes Yes Free for non-commercial use link
SeqMap Up to 5 mixed substitutions and insertions/deletions. Various tuning options and input/output formats.



Free for academic and non-commercial use. link
Shrec Short read error correction with a Suffix trie data structure.


Yes (Java)
link
SHRiMP Indexes the reference genome as of version 2. Uses masks to generate possible keys. Can map ABI SOLiD color space reads. Yes Yes Yes Yes (OpenMP) BSD derivative link
SLIDER Slider is an application for the Illumina Sequence Analyzer output that uses the "probability" files instead of the sequence files as an input for alignment to a reference sequence or a set of reference sequences.




link
SOAP Robust with a small (1-3) number of gaps and mismatches. Speed improvement over BLAT, uses a 12 letter hash table. SOAP2 using bidirectional BWT to build the index of reference, and it is much faster than the first version. Now an GPU-accelerated version named as SOAP3/GPU is being implement, that could find all 3-mismatch alignments in tens of seconds per one million reads.


YES(MULTITHREAD), SOAP3/GPU need GPU available. GPL; SOAP3/GPU source is currently unavailable link
SOCS For ABI SOLiD technologies. Significant increase in time to map reads with mismatches (or color errors). Uses an iterative version of the Rabin-Karp string search algorithm.


Yes GPL link
SSAHA and SSAHA2 Fast for a small number of variants.



Free for academic and non-commercial use. link
Stampy For Illumina reads. High specificity, and sensitive for reads with indels, structural variants, or many SNPs. Fast (uses BWA for first pass).


No Free for academic and non-commercial use link
SToRM For SOLiD color space reads, and with SAM native output. Highly sensitive for reads with many errors, indels (from 1 to 16), and SNPs.


Yes (OpenMP)
link
Taipan de-novo Assembler for Illumina reads



Free for academic and non-commercial use. link
UGENE Visual interface both for Bowtie and embedded aligner



Opensource, GPL link
XpressAlign FPGA based sliding window short read aligner which exploits the embarrassingly parallel property of short read alignment. Performance scales linearly with number of transistors on a chip (i.e. performance guaranteed to double with each iteration of Moore's Law without modification to algorithm). Low power consumption is useful for datacentre equipment. Predictable runtime. Better price/performance than software sliding window aligners on current hardware, but not better than software BWT-based aligners currently. Can cope with large numbers (>2) of mismatches. Will find all hit positions for all seeds. Single-FPGA experimental version, needs work to develop it into a multi-FPGA production version.



Free for academic and non-commercial use. link
ZOOM 100% sensitivity for a reads between 15 - 240bp with practical mismatches. Very fast. Support insertions and deletions. Works with Illumina & SOLiD instruments, not 454.


Yes (GUI) No (CLI). Commercial link

 See also

 References

  1. ^ Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (October 1990). "Basic local alignment search tool". Journal of Molecular Biology 215 (3): 403–10. doi:10.1006/jmbi.1990.9999. PMID 2231712. 
  2. ^ Biegert A, S?ding J (March 2009). "Sequence context-specific profiles for homology searching". Proceedings of the National Academy of Sciences of the United States of America 106 (10): 3770–5. doi:10.1073/pnas.0810767106. PMC 2645910. PMID 19234132. 
  3. ^ Durbin, Richard; Eddy, Sean R.; Krogh, Anders et al., eds (1998). Biological sequence analysis: probalistic models of proteins and nucleic acids. Cambridge, UK: Cambridge University Press. ISBN 978-0-521-62971-3. [page needed]
  4. ^ S?ding J (April 2005). "Protein homology detection by HMM-HMM comparison". Bioinformatics 21 (7): 951–60. doi:10.1093/bioinformatics/bti125. PMID 15531603. 
  5. ^ Altschul SF, Madden TL, Sch?ffer AA, et al. (September 1997). "Gapped BLAST and PSI-BLAST: a new generation of protein database search programs". Nucleic Acids Research 25 (17): 3389–402. doi:10.1093/nar/25.17.3389. PMC 146917. PMID 9254694. 
  6. ^ Hughey, R, Karplus, K., and Krogh, A. (1999) SAM: sequence alignment and modeling software system. Technical report UCSC-CRL 99-11. University of California, Santa Cruz, CA.
  7. ^ Dan Gusfield (1997). Algorithms on strings, trees and sequences. Cambridge university press, ISBN 0-521-58519-8.
  评论这张
 
阅读(2294)| 评论(0)
推荐 转载

历史上的今天

在LOFTER的更多文章

评论

<#--最新日志,群博日志--> <#--推荐日志--> <#--引用记录--> <#--博主推荐--> <#--随机阅读--> <#--首页推荐--> <#--历史上的今天--> <#--被推荐日志--> <#--上一篇,下一篇--> <#-- 热度 --> <#-- 网易新闻广告 --> <#--右边模块结构--> <#--评论模块结构--> <#--引用模块结构--> <#--博主发起的投票-->
 
 
 
 
 
 
 
 
 
 
 
 
 
 

页脚

网易公司版权所有 ©1997-2016